Using Intel® Xeon® Scalable processors and the OpenVINO™ toolkit, Intel and Philips* tested two healthcare use cases for deep learning inference models: one on X-rays of bones for bone-age-prediction modeling, the other on CT scans of lungs for lung segmentation. In these tests, Intel and Philips achieved a speed improvement of 188 times for the bone-age-prediction model, and a 38 times speed improvement for the lung-segmentation model over the baseline measurements.